Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Nov 23;276(47):44297-306. Epub 2001 Sep 13.

Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase.

Author information

  • 1Department of Molecular Microbiology, Biocenter, 70 Klingelbergstrasse, University of Basel, 4056 Basel, Switzerland.


In Streptomyces, a family of related butyrolactones and their corresponding receptor proteins serve as quorum-sensing systems that can activate morphological development and antibiotic biosynthesis. Streptomyces pristinaespiralis contains a gene cluster encoding enzymes and regulatory proteins for the biosynthesis of pristinamycin, a clinically important streptogramin antibiotic complex. One of these proteins, PapR1, belongs to a well known family of Streptomyces antibiotic regulatory proteins. Gel shift assays using crude cytoplasmic extracts detected SpbR, a developmentally regulated protein that bound to the papR1 promoter. SpbR was purified, and its gene was cloned using reverse genetics. spbR encoded a 25-kDa protein similar to Streptomyces autoregulatory proteins of the butyrolactone receptor family, including scbR from Streptomyces coelicolor. In Escherichia coli, purified SpbR and ScbR produced bound sequences immediately upstream of papR1, spbR, and scbR. SpbR DNA-binding activity was inhibited by an extracellular metabolite with chromatographic properties similar to those of the well known gamma-butyrolactone signaling compounds. DNase I protection assays mapped the SpbR-binding site in the papR1 promoter to a sequence homologous to other known butyrolactone autoregulatory elements. A nucleotide data base search showed that these binding motifs were primarily located upstream of genes encoding Streptomyces antibiotic regulatory proteins and butyrolactone receptors in various Streptomyces species. Disruption of the spbR gene in S. pristinaespiralis resulted in severe defects in growth, morphological differentiation, pristinamycin biosynthesis, and expression of a secreted superoxide dismutase.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk