Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2001 Sep 1;10(18):1915-23.

Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome.

Author information

  • 1Down Syndrome Research Group, Medical and Molecular Genetics Center, IRO, Hospital Duran i Reynals, Gran Via s/n, Km 2.7, 08907-L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.

Abstract

Down's syndrome (DS) is a major cause of mental retardation, hypotonia and delayed development. Murine models of DS carrying large murine or human genomic fragments show motor alterations and memory deficits. The specific genes responsible for these phenotypic alterations have not yet been defined. DYRK1A, the human homolog of the Drosophila minibrain gene, maps to the DS critical region of human chromosome 21 and is overexpressed in DS fetal brain. DYRK1A encodes a serine-threonine kinase, probably involved in neuroblast proliferation. Mutant Drosophila minibrain flies have a reduction in both optic lobes and central brain, showing learning deficits and hypoactivity. We have generated transgenic mice (TgDyrk1A) overexpressing the full-length cDNA of Dyrk1A. TgDyrk1A mice exhibit delayed cranio-caudal maturation with functional consequences in neuromotor development. TgDyrk1A mice also show altered motor skill acquisition and hyperactivity, which is maintained to adulthood. In the Morris water maze, TgDyrk1A mice show a significant impairment in spatial learning and cognitive flexibility, indicative of hippocampal and prefrontal cortex dysfunction. In the more complex repeated reversal learning paradigm, this defect turned out to be specifically related to reference memory, whereas working memory was almost unimpaired. These alterations are comparable with those found in the partial trisomy chromosome 16 murine models of DS and suggest a causative role of DYRK1A in mental retardation and in motor anomalies of DS.

PMID:
11555628
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk