Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Adv Space Res. 1981;1(14):39-48.

Survival of microorganisms in space: a review.

Author information

  • DFVLR, Institut fur Flugmedizin, Abt. Biophysik, Frankfurt/Main, FRG.

Abstract

Spores of Bacillus subtilis were exposed to selected factors of space (vacuum, solar UV radiation, heavy ions of cosmic radiation), and their response was studied after recovery. These investigations were supplemented by ground-based studies under simulated space conditions. The vacuum of space did not inactivate the spores. However, vacuum-induced structural changes in the DNA, and probably in the proteins, caused a supersensitivity to solar UV radiation. This phenomenon is caused by the production of specific photoproducts in DNA and protein, which cannot be removed by normal cellular repair processes. In vegetative bacterial cells, exposed to vacuum, cell dehydration led to damage of the cell membrane, which could be partly repaired during subsequent incubation. The high local effectiveness of the cosmic heavy ions further decreases the chance that spores can survive for any length of time in space. Nonetheless, a spore travelling through space and protected from ultraviolet radiation could possibly survive an interplanetary journey. Such a situation favors panspermia as a possible explanation for the origin of life.

PMID:
11541716
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk