Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Hum Gene Ther. 2001 Sep 1;12(13):1651-61.

Adenovirus-mediated factor VIII gene expression results in attenuated anti-factor VIII-specific immunity in hemophilia A mice compared with factor VIII protein infusion.

Author information

  • 1DNA Viral Vectors Unit, Genetic Therapy, Inc., A Novartis Company, 9 West Watkins Mill Road, Gaithersburg, MD 20878, USA.

Abstract

Hemophilia A patients are typically treated by factor VIII (FVIII) protein replacement, an expensive therapy that induces FVIII-specific inhibitors in approximately 30% of patients with severe hemophilia. FVIII gene therapy has the potential to improve the current treatment protocols. In this report, we used a hemophilia A mouse model to compare the humoral and cellular immune responses between an E1/E2a/E3-deficient adenovirus expressing human FVIII directed by a liver-specific albumin promoter and purified recombinant FVIII protein infusion. Adenovirus-mediated FVIII expression did not elicit detectable CD4+ or CD8+ T cell responses and induced a weak antibody immune response to FVIII. In contrast, FVIII protein administration resulted in a potent anti-FVIII antibody response and moderate CD4+ T cell response. Furthermore, hemophiliac mice preimmunized with FVIII protein infusion to induce anti-FVIII immunity, and subsequently treated by adenovirus-mediated FVIII gene therapy, expressed therapeutic levels of FVIII despite the presence of low levels of anti-FVIII antibodies. No FVIII was detected in the plasma of mice with intermediate or high antibody levels, although anti-FVIII antibody levels in some vector-treated animals declined. The data support the hypothesis that liver-specific gene therapy-mediated expression of FVIII may be less immunogenic than traditional protein replacement therapy.

PMID:
11535168
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Write to the Help Desk