Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Nutr. 2001 Sep;131(9 Suppl):2475S-85S; discussion 2486S-7S.

Recent molecular advances in mammalian glutamine transport.

Author information

  • Department of Biology, Saint Louis University, St. Louis, MO 63103-2010, USA.

Abstract

Much has been learned about plasma membrane glutamine transporter activities in health and disease over the past 30 years, including their potential regulatory role in metabolism. Since the 1960s, discrimination among individual glutamine transporters was based on functional characteristics such as substrate specificity, ion dependence, and kinetic and regulatory properties. Within the past two years, several genes encoding for proteins with these defined activities (termed "systems") have been isolated from human and rodent cDNA libraries and found to be distributed among four distinct gene families. The Na(+)-dependent glutamine transporter genes isolated thus far are System N (SN1), System A (ATA1, ATA2), System ASC/B(0) (ASCT2 or ATB(0)), System B(0,+) (ATB(0,+)) and System y(+)L (y(+)LAT1, y(+)LAT2). Na(+)-independent glutamine transporter genes encoding for System L (LAT1, LAT2) and System b(0,+) (b(0,+)AT) have also been recently isolated, and similar to y(+)L, have been shown to function as disulfide-linked heterodimers with the 4F2 heavy chain (CD98) or rBAT (related to b(0,+) amino acid transporter). In this review, the molecular features, catalytic mechanisms and tissue distributions of each are addressed. Although most of these transporters mediate the transmembrane movement of several other amino acids, their potential roles in regulating interorgan glutamine flux are discussed. Most importantly, these newly isolated transporter genes provide the long awaited tools necessary to study their molecular regulation during the catabolic states in which glutamine is considered to be "conditionally essential."

PMID:
11533296
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk