Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Nov 16;276(46):42774-81. Epub 2001 Aug 31.

Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin.

Author information

  • 1Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala University, S-751 23 Uppsala, Sweden.

Abstract

Mast cell tryptase is stored as an active tetramer in complex with heparin in mast cell secretory granules. Previously, we demonstrated the dependence on heparin for the activation/tetramer formation of a recombinant tryptase. Here we have investigated the structural requirements for this activation process. The ability of heparin-related saccharides to activate a recombinant murine tryptase, mouse mast cell protease-6 (mMCP-6), was strongly dependent on anionic charge density and size. The dose-response curve for heparin-induced mMCP-6 activation displayed a bell-shaped appearance, indicating that heparin acts by binding to more than one tryptase monomer simultaneously. The minimal heparin oligosaccharide required for binding to mMCP-6 was 8-10 saccharide units. Gel filtration analyses showed that such short oligosaccharides were unable to generate tryptase tetramers, but instead gave rise to active mMCP-6 monomers. The active monomers were inhibited by bovine pancreatic trypsin inhibitor, whereas the tetramers were resistant. Furthermore, monomeric (but not tetrameric) mMCP-6 degraded fibronectin. Our results suggest a model for tryptase tetramer formation that involves bridging of tryptase monomers by heparin or other highly sulfated polysaccharides of sufficient chain length. Moreover, our results raise the possibility that some of the reported activities of tryptase may be related to active tryptase monomers that may be formed according to the mechanism described here.

PMID:
11533057
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk