Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur Neuropsychopharmacol. 2001 Aug;11(4):275-83.

Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram.

Author information

  • 1Institute of Public Health, Clinical Pharmacology, University of Southern Denmark, Winslowparken 19 DK-5000, Odense, Denmark. k-brosen@cekfo.sdu.dk

Abstract

Citalopram is a selective serotonin reuptake inhibitor that is N-demethylated to N-desmethylcitalopram partially by CYP2C19 and partially by CYP3A4 and N-desmethylcitalopram is further N-demethylated by CYP2D6 to the likewise inactive metabolite di-desmethylcitalopram. The two metabolites are not active. The fact that citalopram is metabolised by more than one CYP means that inhibition of its biotransformation by other drugs is less likely. Besides citalopram has a wide margin of safety, so even if there was a considerable change in serum concentration then this would most likely not be of clinical importance. In vitro citalopram does not inhibit CYP or does so only very moderately. A number of studies in healthy subjects and patients have confirmed, that this also holds true in vivo. Thus no change in pharmacokinetics or only very small changes were observed when citalopram was given with CYP1A2 substrates (clozapine and therophylline), CYP2C9 (warfarin), CYP2C19 (imipramine and mephenytoin), CYP2D6 (sparteine, imipramine and amitriptyline) and CYP3A4 (carbamazepine and triazolam). At the pharmacodynamic level there have been a few documented cases of serotonin syndrome with citalopram and moclobemide and buspirone. It is concluded that citalopram is neither the source nor the cause of clinically important drug-drug interactions.

PMID:
11532381
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk