Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Sports Med. 2001 Aug;22(6):400-4.

Energy cost of riding bicycles with shock absorption systems on a flat surface.

Author information

  • 1Centre de médecine du sport, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium. nielens@read.ucl.ac.be

Abstract

Bike shock absorption systems reduce the energy variation induced by terrain irregularities, leading to a greater comfort. However, they may also induce an increase in energy expenditure for the rider. More specifically, cross-country racers claim that rear shock absorption systems generate significant energy loss. The energy losses caused by such systems may be divided in terrain-induced or rider-induced. This study aims at evaluating the rider-induced energy loss of modern suspended bicycles riding on a flat surface. Twelve experienced competitive racers underwent three multistage gradational tests (50 to 250 W) on a cross-country bicycle mounted on an electromagnetically braked cycle ergometer. Three different tests were performed on a fully suspended bike, front suspended and non-suspended bicycle, respectively. The suspension mode has no significant effect on VO2. The relative difference of VO2 between the front-suspended or full-suspended bike and the rigid bike reaches a non significant maximum of only 3%. The claims of many competitors who still prefer front shock absorption systems could be related to a possible significant energy loss that could be present at powers superior to 250 W or when they stand on the pedals. It could also be generated by terrain-induced energy loss.

PMID:
11531030
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Georg Thieme Verlag Stuttgart, New York
    Loading ...
    Write to the Help Desk