Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2001 Sep 7;286(5):1144-52.

R(+)-methanandamide induces cyclooxygenase-2 expression in human neuroglioma cells via a non-cannabinoid receptor-mediated mechanism.

Author information

  • 1Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-N├╝rnberg, Fahrstrasse 17, Erlangen, D-91054, Germany.


Cannabinoids affect prostaglandin (PG) formation in the central nervous system through as yet unidentified mechanisms. Using H4 human neuroglioma cells, the present study investigates the effect of R(+)-methanandamide (metabolically stable analogue of the endocannabinoid anandamide) on the expression of the cyclooxygenase-2 (COX-2) enzyme. Incubation of cells with R(+)-methanandamide was accompanied by concentration-dependent increases in COX-2 mRNA, COX-2 protein, and COX-2-dependent PGE(2) synthesis. Moreover, treatment of cells with R(+)-methanandamide in the presence of interleukin-1beta led to an overadditive induction of COX-2 expression. The stimulatory effect of R(+)-methanandamide on COX-2 expression was mimicked by the structurally unrelated cannabinoid Delta(9)-tetrahydrocannabinol. Stimulation of both COX-2 mRNA expression and subsequent PGE(2) synthesis by R(+)-methanandamide was not affected by the selective CB(1) receptor antagonist AM-251 or the G(i/o) protein inactivator pertussis toxin. Enhancement of COX-2 expression by R(+)-methanandamide was paralleled by time-dependent phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK. Consistent with the activation of both kinases, R(+)-methanandamide-induced COX-2 mRNA expression and PGE(2) formation were abrogated in the presence of specific inhibitors of p38 MAPK (SB203580) and p42/44 MAPK activation (PD98059). Together, our results demonstrate that R(+)-methanandamide induces COX-2 expression in human neuroglioma cells via a cannabinoid receptor-independent mechanism involving activation of the MAPK pathway. In conclusion, induction of COX-2 expression may represent a novel mechanism by which cannabinoids mediate PG-dependent effects within the central nervous system.

Copyright 2001 Academic Press.

[PubMed - indexed for MEDLINE]

MeSH Terms, Substances

MeSH Terms


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk