Post-light potentiation at type B to A photoreceptor connections in Hermissenda

Neurobiol Learn Mem. 2001 Jul;76(1):7-32. doi: 10.1006/nlme.2000.3988.

Abstract

We investigated whether the long (approximately 30-s) or short (approximately 3-s) light stimuli that have been used during behavioral training would induce post-light potentiation (PLP) at the type B to A photoreceptor connections of the isolated nervous system of Hermissenda. We found that a single approximately 30-s light step induced PLP at these connections relative to both pre-light baseline and seawater control preparations, as did a series of nine short (approximately 3-s) light steps. In addition, a 30-s step of depolarization-elicited type B cell activity induced potentiation comparable to that induced by a approximately 30-s light step, indicating that light-elicited type B cell activity contributes to the induction of PLP. By contrast, even though a series of short (3-s) light steps induced potentiation, short steps of depolarization-evoked type B cell activity did not. Hence, light-evoked processes other than type B cell depolarization or activity (e.g., perhaps intracellular Ca2+ release) also contribute to the induction of PLP. Further results suggest that these other light-evoked processes interact nonadditively with type B cell activity to generate PLP. Some but not all instances of synaptic potentiation were accompanied by various changes in parameters of type B cell action potentials and afterhyperpolarizing potentials, suggesting diverse underlying mechanisms, including increases in neurotransmitter release. Given that the type A cells have been proposed to polysynaptically excite the motor neurons that drive phototaxis, a light-evoked potentiation of synaptic strength at the inhibitory type B to A photoreceptor connections may play a mechanistic role in light-elicited nonassociative learning.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological / physiology
  • Animals
  • Association Learning / physiology
  • Calcium Channels / metabolism
  • Ion Transport / physiology
  • Light*
  • Mollusca
  • Nerve Net / physiology*
  • Neuronal Plasticity / physiology
  • Photoreceptor Cells / physiology*
  • Synapses / physiology

Substances

  • Calcium Channels