Format

Send to

Choose Destination
See comment in PubMed Commons below
J Exp Med. 2001 Aug 20;194(4):455-69.

Interference with immunoglobulin (Ig)alpha immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation modulates or blocks B cell development, depending on the availability of an Igbeta cytoplasmic tail.

Author information

  • 1Institute for Genetics, University of Cologne, D-50931 Cologne, Germany. kraus@cbr.med.harvard.edu

Abstract

To determine the function of immunoglobulin (Ig)alpha immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation, we generated mice in which Igalpha ITAM tyrosines were replaced by phenylalanines (Igalpha(FF/FF)). Igalpha(FF/FF) mice had a specific reduction of B1 and marginal zone B cells, whereas B2 cell development appeared to be normal, except that lambda1 light chain usage was increased. The mutants responded less efficiently to T cell-dependent antigens, whereas T cell-independent responses were unaffected. Upon B cell receptor ligation, the cells exhibited heightened calcium flux, weaker Lyn and Syk tyrosine phosphorylation, and phosphorylation of Igalpha non-ITAM tyrosines. Strikingly, when the Igalpha ITAM mutation was combined with a truncation of Igbeta, B cell development was completely blocked at the pro-B cell stage, indicating a crucial role of ITAM phosphorylation in B cell development.

PMID:
11514602
PMCID:
PMC2193498
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk