Display Settings:

Format

Send to:

Choose Destination
Genetics. 2001 Aug;158(4):1737-53.

Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield.

Author information

  • 1Plant Breeding, Genetics, and Biochemistry Division, International Rice Research Institute, Metro Manila, The Philippines. z.li@cgiar.org

Abstract

To understand the genetic basis of inbreeding depression and heterosis in rice, main-effect and epistatic QTL associated with inbreeding depression and heterosis for grain yield and biomass in five related rice mapping populations were investigated using a complete RFLP linkage map of 182 markers, replicated phenotyping experiments, and the mixed model approach. The mapping populations included 254 F(10) recombinant inbred lines derived from a cross between Lemont (japonica) and Teqing (indica) and two BC and two testcross hybrid populations derived from crosses between the RILs and their parents plus two testers (Zhong 413 and IR64). For both BY and GY, there was significant inbreeding depression detected in the RI population and a high level of heterosis in each of the BC and testcross hybrid populations. The mean performance of the BC or testcross hybrids was largely determined by their heterosis measurements. The hybrid breakdown (part of inbreeding depression) values of individual RILs were negatively associated with the heterosis measurements of their BC or testcross hybrids, indicating the partial genetic overlap of genes causing hybrid breakdown and heterosis in rice. A large number of epistatic QTL pairs and a few main-effect QTL were identified, which were responsible for >65% of the phenotypic variation of BY and GY in each of the populations with the former explaining a much greater portion of the variation. Two conclusions concerning the loci associated with inbreeding depression and heterosis in rice were reached from our results. First, most QTL associated with inbreeding depression and heterosis in rice appeared to be involved in epistasis. Second, most ( approximately 90%) QTL contributing to heterosis appeared to be overdominant. These observations tend to implicate epistasis and overdominance, rather than dominance, as the major genetic basis of heterosis in rice. The implications of our results in rice evolution and improvement are discussed.

PMID:
11514459
[PubMed - indexed for MEDLINE]
PMCID:
PMC1461764
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk