Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2001 Aug 17;503(2-3):173-8.

Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-alpha-D-mannosidase for N-glycan engineering in Pichia pastoris.

Author information

  • 1Unit of Fundamental and Applied Molecular Biology, Department of Molecular Biology, Ghent University, Ghent, Belgium.

Abstract

Therapeutic glycoprotein production in the widely used expression host Pichia pastoris is hampered by the differences in the protein-linked carbohydrate biosynthesis between this yeast and the target organisms such as man. A significant step towards the generation of human-compatible N-glycans in this organism is the conversion of the yeast-type high-mannose glycans to mammalian-type high-mannose and/or complex glycans. In this perspective, we have co-expressed an endoplasmic reticulum-targeted Trichoderma reesei 1,2-alpha-D-mannosidase with two glycoproteins: influenza virus haemagglutinin and Trypanosoma cruzi trans-sialidase. Analysis of the N-glycans of the two purified proteins showed a >85% decrease in the number of alpha-1,2-linked mannose residues. Moreover, the human-type high-mannose oligosaccharide Man(5)GlcNAc(2) was the major N-glycan of the glyco-engineered trans-sialidase, indicating that N-glycan engineering can be effectively accomplished in P. pastoris.

PMID:
11513877
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk