Send to:

Choose Destination
See comment in PubMed Commons below
J Biomech. 2001 Sep;34(9):1179-88.

A method to predict muscle control in the kinematically and mechanically indeterminate human masticatory system.

Author information

  • 1Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Meibergdreef 15, 1105 AZ Amsterdam, Netherlands.


A method is proposed to generate muscle activation patterns for goal-directed movements of the human masticatory system. This system is special because apart from a larger amount of muscles than degrees of freedom its joints do not restrict its movements a priori. Therefore, each muscle is able to influence all six degrees of freedom which makes the system kinematically and mechanically indeterminate. Furthermore, its working space is principally determined by the dynamical properties of its muscles and not by passive constraints. The presented method determines the contribution of each degree of freedom to a movement of a reference point on the mandible. It avails of straightforward mathematical techniques like Linear Programming. It does not require a separate trajectory planning step. It was applied in a six degrees of freedom dynamical mathematical model of the human masticatory system. This model which was based upon rigid-body dynamics incorporating skull morphology and muscle architecture including dynamical properties. Movements were exclusively defined by a goal position of the mandibular reference point. The method proved to be robust in generating muscle activation patterns for both feasible and infeasible movement tasks. Generally, they were accomplished faster than habitually observed. If the task was infeasible the movement stopped at the outer boundary of the working space at the side of the unreachable goal. The method, therefore, enables to explore the working space of the mandible and the factors that are relevant for its boundaries.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk