Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biotechnol Bioeng. 2001 Sep;76(2):164-74.

Production of tissue plasminogen activator (t-PA) in Aspergillus niger.

Author information

  • 1School of Biological Sciences, University of Manchester, Manchester, UK. mgw@bio.auc.dk


A protease-deficient strain of Aspergillus niger has been used as a host for the production of human tissue plasminogen activator (t-PA). In defined medium, up to 0.07 mg t-PA (g biomass)(-1) was produced in batch and fed-batch cultures and production was increased two- to threefold in two-phase batch cultures in which additional glucose was provided as a single pulse at the end of the first batch growth phase. Production was increased [up to 1.9 mg t-PA (g biomass)(-1)] by the addition of soy peptone to the defined medium. The rate of t-PA production in batch cultures supplemented with soy peptone (0.2 to 0.6 mg t-PA L(-1) h(-1)) was comparable to rates observed previously in high-producing mammalian or insect cell cultures. In glucose-limited chemostat culture supplemented with soy peptone, t-PA was produced at a rate of 0.7 mg t-PA L(-1) h(-1). Expression of t-PA in A. niger resulted in increased expression of genes (bipA, pdiA, and cypB) involved in the unfolded protein response (UPR). However, when cypB was overexpressed in a t-PA-producing strain, t-PA production was not increased. The t-PA produced in A. niger was cleaved into two chains of similar molecular weight to two-chain human melanoma t-PA. The two chains appeared to be stable for at least 16 h in culture supernatant of the host strain. However, in general, <1% of the t-PA produced in A. niger was active, and active t-PA disappeared from the culture supernatant during the stationary phase of batch cultures, suggesting that the two-chain t-PA may have been incorrectly processed or that initial proteolytic cleavage occurred within the proteolytic domain of the protein. Total t-PA (detected by enzyme-linked immunoassay) also eventually disappeared from culture supernatants, confirming significant extracellular proteolytic activity, even though the host strain was protease-deficient.

Copyright 2001 John Wiley & Sons, Inc.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk