Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Oct 26;276(43):39713-20. Epub 2001 Aug 10.

Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones.

Author information

  • 1Institute of Pharmaceutical Biology, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany.

Abstract

Sesquiterpene lactones (SLs) have potent anti-inflammatory properties. We have shown previously that they exert this effect in part by inhibiting activation of the transcription factor NF-kappaB, a central regulator of the immune response. We have proposed a molecular mechanism for this inhibition based on computer molecular modeling data. In this model, SLs directly alkylate the p65 subunit of NF-kappaB, thereby inhibiting DNA binding. Nevertheless, an experimental evidence for the proposed mechanism was lacking. Moreover, based on experiments using the SL parthenolide, an alternative mode of action has been proposed by other authors in which SLs inhibit IkappaB-alpha degradation. Here we report the construction of p65/NF-kappaB point mutants that lack the cysteine residues alkylated by SLs in our model. In contrast to wild type p65, DNA-binding of the Cys(38) --> Ser and Cys(38,120) --> Ser mutants is no longer inhibited by SLs. In addition, we provide evidence that parthenolide uses a similar mechanism to other SLs in inhibiting NF-kappaB. Contrary to previous reports, we show that parthenolide, like other SLs, inhibits NF-kappaB most probably by alkylating p65 at Cys(38). Although a slight inhibition of IkappaB degradation was detected for all SLs, the amount of remaining IkappaB was too low to explain the observed NF-kappaB inhibition.

PMID:
11500489
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk