The evolution of bacterial LuxI and LuxR quorum sensing regulators

Microbiology (Reading). 2001 Aug;147(Pt 8):2379-2387. doi: 10.1099/00221287-147-8-2379.

Abstract

Quorum sensing is a widespread form of bacterial communication in which individual cells produce and respond to specific N-acyl homoserine lactone signal metabolites. The different autoinducer synthases that generate these signals and the receptor/activator proteins that mediate the cell's response to them constitute evolutionarily conserved families of regulatory proteins known as the LuxI and LuxR families, respectively. We have performed a phylogenetic analysis of 76 individual LuxI and LuxR homologues present in diverse members of the Gram-negative Proteobacteria. The results were consistent with an early origin for these regulators during the evolution of the Proteobacteria, with functional pairs of luxI and luxR genes possibly coevolving as regulatory cassettes. In many cases, specific LuxI and LuxR family members appeared to have been inherited horizontally. In particular, those species containing multiple LuxI and/or LuxR homologues usually appeared to have obtained each individual homologue or functional pair of homologues from an independent source. Because multiple homologues interact to form regulatory cascades, this finding suggests that hierarchical signalling pathways can potentially evolve by the sequential integration of pre-existing regulatory circuits acquired from diverse sources.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / genetics*
  • Evolution, Molecular*
  • Gene Expression Regulation, Bacterial*
  • Gene Transfer, Horizontal
  • Genes, rRNA / genetics
  • Phylogeny
  • Proteobacteria / genetics*
  • Proteobacteria / physiology
  • RNA, Ribosomal, 16S / genetics
  • Repressor Proteins / genetics*
  • Signal Transduction
  • Trans-Activators / genetics*
  • Transcription Factors / genetics*

Substances

  • Bacterial Proteins
  • LuxI protein, Bacteria
  • RNA, Ribosomal, 16S
  • Repressor Proteins
  • Trans-Activators
  • Transcription Factors
  • LuxR autoinducer binding proteins