Membrane properties of principal neurons of the lateral superior olive

J Neurophysiol. 2001 Aug;86(2):922-34. doi: 10.1152/jn.2001.86.2.922.

Abstract

In the lateral superior olive (LSO) the firing rate of principal neurons is a linear function of inter-aural sound intensity difference (IID). The linearity and regularity of the "chopper response" of these neurons have been interpreted as a result of an integration of excitatory ipsilateral and inhibitory contralateral inputs by passive soma-dendritic cable properties. To account for temporal properties of this output, we searched for active time- and voltage-dependent nonlinearities in whole cell recordings from a slice preparation of the rat LSO. We found nonlinear current-voltage relations that varied with the membrane holding potential. Repetitive regular firing, supported by voltage oscillations, was evoked by current pulses injected from holding potentials near rest, but the response was reduced to an onset spike of fixed short latency when the pulse was injected from de- or hyperpolarized holding potentials. The onset spike was triggered by a depolarizing transient potential that was supported by T-type Ca(2+)-, subthreshold Na(+)-, and hyperpolarization-activated (I(H)) conductances sensitive, respectively, to blockade with Ni2+, tetrodotoxin (TTX), and Cs+. In the hyperpolarized voltage range, the I(H), was largely masked by an inwardly rectifying K+ conductance (I(KIR)) sensitive to blockade with 200 microM Ba2+. In the depolarized range, a variety of K+ conductances, including A-currents sensitive to blockade with 4-aminopyridine (4-AP) and additional tetraethylammonium (TEA)-sensitive currents, terminated the transient potential and firing of action potentials, supporting a strong spike-rate adaptation. The "chopper response," a hallmark of LSO principal neuron firing, may depend on the voltage- and time-dependent nonlinearities. These active membrane properties endow the LSO principal neurons with an adaptability that may maintain a stable code for sound direction under changing conditions, for example after partial cochlear hearing loss.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 4-Aminopyridine / pharmacology
  • Action Potentials / drug effects
  • Action Potentials / physiology*
  • Animals
  • Barium / pharmacology
  • Cesium / pharmacology
  • Electric Conductivity
  • Neurons / physiology*
  • Nickel / pharmacology
  • Olivary Nucleus / cytology*
  • Olivary Nucleus / physiology*
  • Patch-Clamp Techniques
  • Potassium / metabolism
  • Rats
  • Rats, Long-Evans
  • Sodium / metabolism
  • Tetrodotoxin / pharmacology

Substances

  • Cesium
  • Barium
  • Tetrodotoxin
  • Nickel
  • Sodium
  • 4-Aminopyridine
  • Potassium