Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2001 Aug 15;21(16):6370-6.

Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons.

Author information

  • 1Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4. floresco@brain.bns.pitt.edu

Abstract

Interactions between the basolateral amygdala (BLA) and the nucleus accumbens (NAc) mediate reward-related processes that are modulated by mesoaccumbens dopamine (DA) transmission. The present in vivo electrophysiological study assessed: (1) changes in the firing probability of submaximal BLA-evoked single neuronal firing activity in the NAc after tetanic stimulation of the BLA, and (2) the functional roles of DA and NMDA receptors in these processes. Tetanic stimulation of the BLA potentiated BLA-evoked firing activity of NAc neurons for a short duration ( approximately 25 min). This short-term potentiation was associated with an increase in DA oxidation currents that was monitored with chronoamperometry. Systemic or iontophoretic application before BLA tetanus of the D(1) receptor antagonist SCH23390, but not the D(2) receptor antagonist sulpiride, abolished the potentiation of BLA-evoked NAc activity, whereas administration of SCH23390 3 min after tetanus had no effect. However, systemic administration of the NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), either before or after BLA tetanus, abolished the potentiation of BLA-evoked firing of NAc neurons. These data suggest that higher-frequency activity in BLA efferents can autoregulate their excitatory influence over neural activity of NAc neurons by facilitating the release of DA and activating both DA D(1) and NMDA receptors. This may represent a cellular mechanism that facilitates approach behaviors directed toward reward-related stimuli that are mediated by BLA-NAc circuitries.

PMID:
11487660
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk