Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biomed Pharmacother. 2001 Jul;55(6):324-32.

Iron: deficiencies and requirements.

Author information

  • 1Laboratoire de Pharmacologie Cellulaire & Moléculaire, Université de Paris Sud, Faculté de Pharmacie, Chatenay Malabry, France. haim.tapiero@cep.u-psud.fr

Abstract

A report from the World Health Organization estimates that 46% of the world's 5- to 14-year-old children are anemic. In addition, 48% of the world's pregnant women are anemic. A majority of these cases of anemia are due to iron deficiency. Our aim here is to review the latest data on iron regulatory mechanisms, iron sources and requirements. Human and animal studies have shown that amino acids and peptides influence iron absorption from the intestinal lumen. Inter-organ transport and uptake of nonheme iron is largely performed by the complex transferring-transferring receptor system. Moreover, the discovery of cytoplasmic iron regulatory proteins (IRPs) has provided a molecular framework from which we understand the coordination of cellular iron homeostasis in mammals. IRPs and the iron responsive elements (IREs) to which they bind allow mammals to make use of the essential properties of iron while reducing its potentially toxic effect. Physiologic iron requirements are three times higher in pregnancy than they are in menstruating women (approximately 1200 mg must be acquired from the body's iron store or from the diet by the end of pregnancy). The administration of iron supplements weekly instead of daily in humans has been proposed and is being actively investigated as a viable means of controlling iron deficiency in populations, including pregnant women.

PMID:
11478585
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk