Send to:

Choose Destination
See comment in PubMed Commons below
Diabetes. 2001 Aug;50(8):1943-8.

Susceptibility and negative epistatic loci contributing to type 2 diabetes and related phenotypes in a KK/Ta mouse model.

Author information

  • 1Division of Nephrology, Department of Medicine, and the. Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan.


The KK/Ta mouse strain serves as a suitable polygenic model for human type 2 diabetes. Using 93 microsatellite markers in 208 KK/Ta x (BALB/c x KK/Ta)F1 male backcross mice, we carried out a genome-wide linkage analysis of KK/Ta alleles contributing to type 2 diabetes and related phenotypes, such as obesity and dyslipidemia. We identified three major chromosomal intervals significantly contributing to impaired glucose metabolism: one quantitative trait locus for impaired glucose tolerance on chromosome 6 and two loci for fasting blood glucose levels on chromosomes 12 and 15. The latter two loci appeared to act in a complementary fashion. Two intervals showed significant linkages for serum triglyceride levels, one on chromosome 4 and the other on chromosome 8. The KK allele on chromosome 8 acts to promote serum triglyceride levels, whereas the KK allele on chromosome 4 acts to suppress this effect in a recessive fashion. In addition, it is suggested that the chromosome 4 locus also acts to downregulate body weight and that the chromosome 8 locus acts to upregulate serum insulin levels. Our data clearly showed that each disease phenotype of type 2 diabetes and related disorders in KK/Ta mice is under the control of separate genetic mechanisms. However, there appear to be common genes contributing to different disease phenotypes. There are potentially important candidate genes that may be relevant to the disease.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk