Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Bioinformatics. 2001;17 Suppl 1:S296-305.

Protein-protein interaction map inference using interacting domain profile pairs.

Author information

  • 1Hybrigenics S.A., 180 avenue Daumesnil, 75012 Paris, France.


A number of predictive methods have been designed to predict protein interaction from sequence or expression data. On the experimental front, however, high-throughput proteomics technologies are starting to yield large volumes of protein-protein interaction data. High-quality experimental protein interaction maps constitute the natural dataset upon which to build interaction predictions. Thus the motivation to develop the first interaction-based protein interaction map prediction algorithm. A technique to predict protein-protein interaction maps across organisms is introduced, the 'interaction-domain pair profile' method. The method uses a high-quality protein interaction map with interaction domain information as input to predict an interaction map in another organism. It combines sequence similarity searches with clustering based on interaction patterns and interaction domain information. We apply this approach to the prediction of an interaction map of Escherichia coli from the recently published interaction map of the human gastric pathogen Helicobacter pylori. Results are compared with predictions of a second inference method based only on full-length protein sequence similarity - the "naive" method. The domain-based method is shown to i) eliminate a significant amount of false-positives of the naive method that are the consequences of multi-domain proteins; ii) increase the sensitivity compared to the naive method by identifying new potential interactions.


Contact the authors.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk