Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9116-21. Epub 2001 Jul 24.

A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver.

Author information

  • 1Dallas Veterans Affairs Medical Center and Department of Biochemistry, University of Texas Southwestern Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, USA.


Carbohydrates mediate their conversion to triglycerides in the liver by promoting both rapid posttranslational activation of rate-limiting glycolytic and lipogenic enzymes and transcriptional induction of the genes encoding many of these same enzymes. The mechanism by which elevated carbohydrate levels affect transcription of these genes remains unknown. Here we report the purification and identification of a transcription factor that recognizes the carbohydrate response element (ChRE) within the promoter of the L-type pyruvate kinase (LPK) gene. The DNA-binding activity of this ChRE-binding protein (ChREBP) in rat livers is specifically induced by a high carbohydrate diet. ChREBP's DNA-binding specificity in vitro precisely correlates with promoter activity in vivo. Furthermore, forced ChREBP overexpression in primary hepatocytes activates transcription from the L-type Pyruvate kinase promoter in response to high glucose levels. The DNA-binding activity of ChREBP can be modulated in vitro by means of changes in its phosphorylation state, suggesting a possible mode of glucose-responsive regulation. ChREBP is likely critical for the optimal long-term storage of excess carbohydrates as fats, and may contribute to the imbalance between nutrient utilization and storage characteristic of obesity.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk