Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Biol. 2001 Jul 10;11(13):1017-27.

Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline.

Author information

  • 1Department of Animal Molecular Genetics, Institute of Molecular Genetics, 123182, Moscow, Russia.

Abstract

BACKGROUND:

The injection of double-stranded RNA (dsRNA) has been shown to induce a potent sequence-specific inhibition of gene function in diverse invertebrate and vertebrate species. The homology-dependent posttranscriptional gene silencing (PTGS) caused by the introduction of transgenes in plants may be mediated by dsRNA. The analysis of Caenorhabditis elegans mutants impaired with dsRNA-mediated silencing and studies in plants implicate a biological role of dsRNA-mediated silencing as a transposon-repression and antiviral mechanism.

RESULTS:

We investigated the silencing of testis-expressed Stellate genes by paralogous Su(Ste) tandem repeats, which are known to be involved in the maintenance of male fertility in Drosophila melanogaster. We found that both strands of repressor Su(Ste) repeats are transcribed, producing sense and antisense RNA. The Stellate silencing is associated with the presence of short Su(Ste) RNAs. Cotransfection experiments revealed that Su(Ste) dsRNA can target and eliminate Stellate transcripts in Drosophila cell culture. The short fragment of Stellate gene that is homologous to Su(Ste) was shown to be sufficient to confer Su(Ste)-dependent silencing of a reporter construct in testes. We demonstrated that Su(Ste) dsRNA-mediated silencing affects not only Stellate expression but also the level of sense Su(Ste) RNA providing a negative autogenous regulation of Su(Ste) expression. Mutation in the spindle-E gene relieving Stellate silencing also leads to a derepression of the other genomic tandem repeats and retrotransposons in the germline.

CONCLUSIONS:

Homology-dependent gene silencing was shown to be used to inhibit Stellate gene expression in the D. melanogaster germline, ensuring male fertility. dsRNA-mediated silencing may provide a basis for negative autogenous control of gene expression. The related surveillance system is implicated to control expression of retrotransposons in the germline.

PMID:
11470406
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk