Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes

Med Biol Eng Comput. 2001 May;39(3):294-302. doi: 10.1007/BF02345283.

Abstract

Knee joint angle and angular velocity were calculated in real time during standing up and sitting down. Two small modules comprising rate gyroscopes and accelerometers were attached to the thigh and shank of two able-bodied volunteers and one T5 ASIA(A) paraplegic assisted by functional electrical stimulation (FES). The offset and drift of the rate gyroscopes was compensated for by auto-resetting and auto-nulling algorithms. The tilt of the limb segments was calculated by combining the signals of the accelerometer and the rate gyroscope. The joint angle was calculated as the difference in tilt of the segments. The modules were also tested on a two-dimensional model. The mean differences between the rate gyroscope-accelerometer system and the reference goniometer for the model, able-bodied and paraplegic standing trials were 2.1 degrees, 2.4 degrees and 2.3 degrees respectively for knee angle and 2.3 degrees s(-1), 5.0 degrees s(-1) and 11.8 degrees s(-1) respectively for knee velocity. The rate gyroscope-accelerometer system was more accurate than using the accelerometer as a tilt meter, possibly due to the greater bandwidth of the rate gyroscope-accelerometer system.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acceleration
  • Adult
  • Electric Stimulation Therapy
  • Female
  • Gait*
  • Humans
  • Knee Joint / physiopathology*
  • Male
  • Paraplegia / physiopathology*
  • Paraplegia / rehabilitation