Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem J. 2001 Aug 1;357(Pt 3):673-85.

Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins.

Author information

  • 1Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria 3052, Australia. R.Williams@anatomy.unimelb.edu.au

Abstract

STIM1 (where STIM is stromal interaction molecule) is a candidate tumour suppressor gene that maps to human chromosome 11p15.5, a region implicated in a variety of cancers, particularly embryonal rhabdomyosarcoma. STIM1 codes for a transmembrane phosphoprotein whose structure is unrelated to that of any other known proteins. The precise pathway by which STIM1 regulates cell growth is not known. In the present study we screened gene databases for STIM1-related sequences, and have identified and characterized cDNA sequences representing a single gene in humans and other vertebrates, which we have called STIM2. We identified a single STIM homologue in Drosophila melanogaster (D-Stim) and Caenorhabditis elegans, but no homologues in yeast. STIM1, STIM2 and D-Stim have a conserved genomic organization, indicating that the vertebrate family of two STIM genes most probably arose from a single ancestral gene. The three STIM proteins each contain a single SAM (sterile alpha-motif) domain and an unpaired EF hand within the highly conserved extracellular region, and have coiled-coil domains that are conserved in structure and position within the cytoplasmic region. However, the STIM proteins diverge significantly within the C-terminal half of the cytoplasmic domain. Differential levels of phosphorylation appear to account for two molecular mass isoforms (105 and 115 kDa) of STIM2. We demonstrate by mutation analysis and protein sequencing that human STIM2 initiates translation exclusively from a non-AUG start site in vivo. STIM2 is expressed ubiquitously in cell lines, and co-precipitates with STIM1 from cell lysates. This association into oligomers in vivo indicates a possible functional interaction between STIM1 and STIM2. The structural similarities between STIM1, STIM2 and D-STIM suggest conserved biological functions.

PMID:
11463338
[PubMed - indexed for MEDLINE]
PMCID:
PMC1221997
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Portland Press Icon for PubMed Central
    Loading ...
    Write to the Help Desk