Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Endocrinology. 2001 Aug;142(8):3324-31.

Prepro-orexin and orexin receptor mRNAs are differentially expressed in peripheral tissues of male and female rats.

Author information

  • 1Institute of Experimental and Clinical Pharmacology and Toxicology, Medical University Lübeck, D-23538 Lübeck, Germany. joehren@medinf.mu-luebeck.de

Abstract

Orexins are produced specifically by neurons located in the lateral hypothalamus. Recent results suggested peripheral actions of orexins. Therefore, we analyzed the mRNA expression of prepro-orexin and the orexin receptor subtypes OX(1) and OX(2) in peripheral rat tissues. Using real-time quantitative RT-PCR we detected significant amounts of prepro-orexin mRNA in testis, but not in ovaries. OX(1) receptor mRNA was highly expressed in the brain and at lower levels in the pituitary gland. Only small amounts of OX(1) receptor mRNA were found in other tissues such as kidney, adrenal, thyroid, testis, ovaries, and jejunum. Very high levels of OX(2) receptor mRNA, 4-fold higher than in brain, were found in adrenal glands of male rats. Low amounts of OX(2) receptor mRNA were present in lung and pituitary. In adrenal glands, OX(2) receptor mRNA was localized in the zona glomerulosa and reticularis by in situ hybridization, indicating a role in adrenal steroid synthesis and/or release. OX(1) receptor mRNA in the pituitary and OX(2) receptor mRNA in the adrenal gland were much higher in male than in female rats. In the hypothalamus, OX(1) receptor mRNA was slightly elevated in female rats. The differential mRNA expression of orexin receptor subtypes in peripheral organs indicates discrete peripheral effects of orexins and the existence of a peripheral orexin system. This is supported by the detection of orexin A in rat plasma. Moreover, the sexually dimorphic expression of OX(1) and OX(2) receptors in the hypothalamus, pituitary, and adrenal glands suggests gender-specific roles of orexins in the control of endocrine functions.

PMID:
11459774
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk