Fate of Escherichia coli O157:H7, Salmonella typhimurium DT 104, and Listeria monocytogenes in fresh meat decontamination fluids at 4 and 10 degrees C

J Food Prot. 2001 Jul;64(7):950-7. doi: 10.4315/0362-028x-64.7.950.

Abstract

Bacterial pathogens may colonize meat plants and increase food safety risks following survival, stress hardening, or proliferation in meat decontamination fluids (washings). The objective of this study was to evaluate the ability of Escherichia coli O157:H7, Salmonella Typhimurium DT 104, and Listeria monocytogenes to survive or grow in spray-washing fluids from fresh beef top rounds sprayed with water (10 or 85 degrees C) or acid solutions (2% lactic or acetic acid, 55 degrees C) during storage of the washings at 4 or 10 degrees C in air to simulate plant conditions. Inoculated Salmonella Typhimurium DT 104 (5.4 +/- 0.1 log CFU/ml) died off in lactate (pH 2.4 +/- 0.1) and acetate (pH 3.1 +/- 0.2) washings by 2 days at either storage temperature. In contrast, inoculated E. coli O157:H7 (5.2 +/- 0.1 log CFU/ml) and L. monocytogenes (5.4 +/- 0.1 log CFU/ml) survived in lactate washings for at least 2 days and in acetate washings for at least 7 and 4 days, respectively; their survival was better in acidic washings stored at 4 degrees C than at 10 degrees C. All inoculated pathogens survived in nonacid (pH > 6.0) washings, but their fate was different. E. coli O157:H7 did not grow at either temperature in water washings, whereas Salmonella Typhimurium DT 104 failed to multiply at 4 degrees C but increased by approximately 2 logs at 10 degrees C. L. monocytogenes multiplied (0.6 to 1.3 logs) at both temperatures in water washings. These results indicated that bacterial pathogens may survive for several days in acidic, and proliferate in water, washings of meat, serving as potential cross-contamination sources, if pathogen niches are established in the plant. The responses of surviving pathogens in meat decontamination waste fluids to acid or other stresses need to be addressed to better evaluate potential food safety risks.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air
  • Animals
  • Cattle
  • Colony Count, Microbial
  • Decontamination
  • Escherichia coli O157 / growth & development*
  • Escherichia coli O157 / isolation & purification
  • Food Microbiology*
  • Hydrogen-Ion Concentration
  • Listeria monocytogenes / growth & development*
  • Listeria monocytogenes / isolation & purification
  • Salmonella typhimurium / growth & development*
  • Salmonella typhimurium / isolation & purification
  • Temperature
  • Time Factors