Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2001 Jul 15;61(14):5378-81.

Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice.

Author information

  • 1Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA.

Abstract

Mitochondria are not only the major site for generation of reactive oxygen species, but also one of the main targets of oxidative damage. One of the major products of DNA oxidation, 8-oxodeoxyguanosine (8-oxodG), accumulates in mitochondrial DNA (mtDNA) at levels three times higher than in nuclear DNA. The main pathway for the repair of 8-oxodG is the base excision repair pathway initiated by oxoguanine DNA glycosylase (OGG1). We previously demonstrated that mammalian mitochondria from mice efficiently remove 8-oxodG from their genomes and isolated a protein from rat liver mitochondria with 8-oxoguanine (8-oxodG) DNA glycosylase/apurinic DNA lyase activity. In the present study, we demonstrated that the mitochondrial 8-oxodG DNA glycosylase/apurinic DNA lyase activity is the mitochondrial isoform of OGG1. Using mouse liver mitochondria isolated from ogg1(-/-) mice, we showed that the OGG1 gene encodes for the mitochondrial 8-oxodG glycosylase because these extracts have no incision activity toward an oligonucleotide containing a single 8-oxodG DNA base lesion. Consistent with an important role for the OGG1 protein in the removal of 8-oxodG from the mitochondrial genome, we found that mtDNA isolated from liver from OGG1-null mutant animals contained 20-fold more 8-oxodG than mtDNA from wild-type animals.

PMID:
11454679
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk