Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 2001 Jul;41(1):33-46.

Deletion of a novel protein kinase with PX and FYVE-related domains increases the rate of differentiation of Trypanosoma brucei.

Author information

  • 1Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany.

Abstract

Growth control of African trypanosomes in the mammalian host is coupled to differentiation of a non-dividing life cycle stage, the stumpy bloodstream form. We show that a protein kinase with novel domain architecture is important for growth regulation. Zinc finger kinase (ZFK) has a kinase domain related to RAC and S6 kinases flanked by a FYVE-related zinc finger and a phox (PX) homology domain. To investigate the function of the kinase during cyclical development, a stable transformation procedure for bloodstream forms of differentiation-competent (pleomorphic) Trypanosoma brucei strains was established. Deletion of both allelic copies of ZFK by homologous recombination resulted in reduced growth of bloodstream-form parasites in culture, which was correlated with an increased rate of differentiation to the non-dividing stumpy form. Growth and differentiation rates were returned to wild-type level by ectopic ZFK expression. The phenotype is stage-specific, as growth of procyclic (insect form) trypanosomes was unaffected, and Deltazfk/Deltazfk clones were able to undergo full cyclical development in the tsetse fly vector. Deletion of ZFK in a differentiation-defective (monomorphic) strain of T. brucei did not change its growth rate in the bloodstream stage. This suggests a function of ZFK associated with the trypanosomes' decision between either cell cycle progression, as slender bloodstream form, or differentiation to the non-dividing stumpy form.

PMID:
11454198
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk