Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Hered. 2001 May-Jun;92(3):295-300.

FISH mapping of the 5S and 18S-28S rDNA loci in different species of Glycine.

Author information

  • 1Department of Plant and Soil Science, Alabama A&M University, 4900 Meridian St., Carver Complex South, Room 213, Normal, AL 35762, USA.


Wild germplasms are often the only significant sources of useful traits for crops, such as soybean, that have limited genetic variability. Before these germplasms can be effectively manipulated they must be characterized at the cytological and molecular levels. Modern soybean probably arose through an ancient allotetraploid event and subsequent diploidization of the genome. However, wild Glycine species have not been intensively investigated for this ancient polyploidy. In this article we determined the number of both the 5S and 18S-28S rDNA sequences in various members of the genus Glycine using FISH. Our results distinctly establish the loss of a 5S rDNA locus from the "diploid" (2n = 40) species and the loss of two from the (2n = 80) polyploids of GLYCINE: A similar diploidization of the 18S-28S rDNA gene family has occurred in G. canescens, G. clandestina, G. soja, and G. max (L.) Merr. (2n = 40). Although of different genome types, G. tabacina and G. tomentella (2n = 80) both showed two major 18S-28S rDNA loci per haploid genome, in contrast to the four loci that would be expected in chromosomes that have undergone two doubling events in their evolutionary history. It is evident that the evolution of the subgenus Glycine is more complex than that represented in a simple diploid-doubled to tetraploid model.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk