Residues at the active site of the esterase 2 from Alicyclobacillus acidocaldarius involved in substrate specificity and catalytic activity at high temperature

J Biol Chem. 2001 Oct 5;276(40):37482-90. doi: 10.1074/jbc.M103017200. Epub 2001 Jul 10.

Abstract

The recently solved three-dimensional structure of the thermophilic esterase 2 from Alicyclobacillus acidocaldarius allowed us to have a snapshot of an enzyme-sulfonate complex, which mimics the second stage of the catalytic reaction, namely the covalent acyl-enzyme intermediate. The aim of this work was to design, by structure-aided analysis and to generate by site-directed and saturation mutagenesis, EST2 variants with changed substrate specificity in the direction of preference for monoacylesters whose acyl-chain length is greater than eight carbon atoms. Positions 211 and 215 of the polypeptide chain were chosen to introduce mutations. Among five variants with single and double amino acid substitutions, three were obtained, M211S, R215L, and M211S/R215L, that changed the catalytic efficiency profile in the desired direction. Kinetic characterization of mutants and wild type showed that this change was achieved by an increase in k(cat) and a decrease in K(m) values with respect to the parental enzyme. The M211S/R215L specificity constant for p-nitrophenyl decanoate substrate was 6-fold higher than the wild type. However, variants M211T, M211S, and M211V showed strikingly increased activity as well as maximal activity with monoacylesters with four carbon atoms in the acyl chain, compared with the wild type. In the case of mutant M211T, the k(cat) for p-nitrophenyl butanoate was 2.4-fold higher. Overall, depending on the variant and on the substrate, we observed improved catalytic activity at 70 degrees C with respect to the wild type, which was a somewhat unexpected result for an enzyme with already high k(cat) values at high temperature. In addition, variants with altered specificity toward the acyl-chain length were obtained. The results were interpreted in the context of the EST2 three-dimensional structure and a proposed catalytic mechanism in which k(cat), e.g. the limiting step of the reaction, was dependent on the acyl chain length of the ester substrate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus / enzymology*
  • Binding Sites
  • Binding, Competitive
  • Carboxylic Ester Hydrolases / antagonists & inhibitors
  • Carboxylic Ester Hydrolases / genetics
  • Carboxylic Ester Hydrolases / metabolism*
  • Catalysis
  • HEPES / pharmacology
  • Models, Molecular
  • Mutagenesis, Site-Directed
  • Protein Engineering
  • Substrate Specificity
  • Temperature

Substances

  • Carboxylic Ester Hydrolases
  • HEPES