Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7875-8. Epub 2001 Jun 26.

Wheat leaves emit nitrous oxide during nitrate assimilation.

Author information

  • 1Department of Vegetable Crops, University of California, Davis, CA 95616-8746, USA.


Nitrous oxide (N(2)O) is a key atmospheric greenhouse gas that contributes to global climatic change through radiative warming and depletion of stratospheric ozone. In this report, N(2)O flux was monitored simultaneously with photosynthetic CO(2) and O(2) exchanges from intact canopies of 12 wheat seedlings. The rates of N(2)O-N emitted ranged from <2 pmol x m(-2) x s(-1) when NH(4)(+) was the N source, to 25.6 +/- 1.7 pmol x m(-2) x s(-1) (mean +/- SE, n = 13) when the N source was shifted to NO(3)(-). Such fluxes are among the smallest reported for any trace gas emitted by a higher plant. Leaf N(2)O emissions were correlated with leaf nitrate assimilation activity, as measured by using the assimilation quotient, the ratio of CO(2) assimilated to O(2) evolved. (15)N isotopic signatures on N(2)O emitted from leaves supported direct N(2)O production by plant NO(3)(-) assimilation and not N(2)O produced by microorganisms on root surfaces and emitted in the transpiration stream. In vitro production of N(2)O by both intact chloroplasts and nitrite reductase, but not by nitrate reductase, indicated that N(2)O produced by leaves occurred during photoassimilation of NO(2)(-) in the chloroplast. Given the large quantities of NO(3)(-) assimilated by plants in the terrestrial biosphere, these observations suggest that formation of N(2)O during NO(2)(-) photoassimilation could be an important global biogenic N(2)O source.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk