Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2001 Jul 1;167(1):482-9.

Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells.

Author information

  • 1Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, WI 53706, USA.

Abstract

Diphosphoryl lipid A derived from the nontoxic LPS of Rhodobacter sphaeroides (RsDPLA) has been shown to be a powerful LPS antagonist in both human and murine cell lines. In addition, RsDPLA also can protect mice against the lethal effects of toxic LPS. In this study, we complexed both the deep rough LPS from Escherichia coli D31 m4 (ReLPS) and RsDPLA with 5- and 30-nm colloidal gold and compared their binding to the RAW 264.7 cell line by electron microscopy. Both ReLPS and RsDPLA bound to the cells with the following observations. First, binding studies revealed that pretreatment with RsDPLA completely blocked the binding and thus internalization of ReLPS-gold conjugates to these cells at both 37 degrees C and 4 degrees C. Second, ReLPS was internalized via micropinocytosis (noncoated plasma membrane invaginations) involving formation of caveolae-like structures and leading to the formation of micropinocytotic vesicles, macropinocytosis (or phagocytosis), formation of clathrin-coated pits (receptor mediated), and penetration through plasma membrane into cytoplasm. Third, in contrast, RsDPLA was internalized predominantly via macropinocytosis. These studies show for the first time that RsDPLA blocks the binding and thus internalization of LPS as observed by scanning and transmission electron microscopy.

PMID:
11418686
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk