Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2001 Jun 28;1519(3):216-22.

Genomic structure and promoter characterization of an imprinted tumor suppressor gene ARHI.

Abstract

We have recently identified a maternally imprinted tumor suppressor gene, ARHI (aplysia ras homolog I), the expression of which is lost in ovarian and breast cancers. We have now characterized the genomic structure of the gene including its promoter and the methylation status of its upstream CpG islands. The ARHI gene spans approximately 8 kb containing two exons and one intron. Exon 1 contains 81 non-translated nucleotides, connected to exon 2 with a 3.2-kb intron. The entire protein-coding region is located within exon 2 and encodes a 229-residue small GTP-binding protein belonging to the Ras superfamily. Genomic structure analysis has identified three potential CpG islands. Two of them (CpG island I and II) are located within the promoter and adjacent exon 1 of the ARHI gene. Aberrant methylation of these CpG islands has been detected in breast cancer cells but not in normal epithelial cells, supporting the possibility that appropriate methylation status of the CpG islands in the promoter region may play a role in the downregulation of ARHI gene expression. A TATA box is found 27 bp upstream of the transcription start site associated with several putative transcription factor binding sites. Transient transfection with nested deletion constructs of the 2-kb ARHI promoter regions fused to a luciferase reporter indicated a 121-bp sequence upstream of the transcription initiation site is required for basal promoter activity. Interestingly, this is the region where lower promoter activity has been observed in cancer cells than in normal cells.

PMID:
11418188
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk