Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2001 Jun 15;61(12):4756-60.

Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients.

Author information

  • 1Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.

Abstract

Impaired T-cell function in patients with advanced cancer has been a widely acknowledged finding, but mechanisms reported thus far are those primarily operating in the tumor microenvironment. Very few mechanisms have been put forth to explain several well-described defects in peripheral blood T cells, such as reduction in expression of signaling molecules, decreased production of cytokines, or increased apoptosis. We have closely examined the peripheral blood mononuclear cell (PBMC) samples derived from patients and healthy individuals, and we have observed an important difference that may underlie the majority of reported defects. We observed that in samples from patients only, an unusually large number of granulocytes copurify with low density PBMCs on a density gradient rather than sediment, as expected, to the bottom of the gradient. We also show that activating granulocytes from a healthy donor with N-formyl-L-methionyl-L-leucyl-L-phenylalanine could also cause them to sediment aberrantly and copurify with PBMCs, suggesting that density change is a marker of their activation. To confirm this, we looked for other evidence of in vivo granulocyte activation and found it in drastically elevated plasma levels of 8-isoprostane, a product of lipid peroxidation and a marker of oxidative stress. Reduced T-cell receptor zeta chain expression and decreased cytokine production by patients' T cells correlated with the presence of activated granulocytes in their PBMCs. We showed that freshly obtained granulocytes from healthy donors, if activated, can also inhibit cytokine production by T cells. This action is abrogated by the addition of the hydrogen peroxide (H(2)O(2)) scavenger, catalase, implicating H(2)O(2) as the effector molecule. Indeed, when added alone, H(2)O(2) could suppress cytokine production of normal T cells. These findings indicate that granulocytes are activated in advanced cancer patients and that granulocyte-derived H(2)O(2) is the major cause of severe systemic T-cell suppression.

PMID:
11406548
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk