Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Aug 3;276(31):29588-95. Epub 2001 Jun 6.

Identification of the minimal tyrosine residues required for linker for activation of T cell function.

Author information

  • 1Department of Medicine, Biomedical Sciences Graduate Program, Howard Hughes Medical Institute, University of California, San Francisco, California 94143-0795, USA.

Abstract

The linker for activation of T cells (LAT) is essential for signaling through the T cell receptor (TCR). Following TCR stimulation, LAT becomes tyrosine-phosphorylated, creating docking sites for other signaling proteins such as phospholipase C-gamma(1) (PLC-gamma(1)), Grb2, and Gads. In this study, we have attempted to identify the critical tyrosine residues in LAT that mediate TCR activation-induced mobilization of intracellular Ca(2+) and activation of the MAP kinase Erk2. By using the LAT-deficient Jurkat derivative, J.CaM2, stable cell lines were established expressing various tyrosine mutants of LAT. We show that three specific tyrosine residues (Tyr(132), Tyr(171), and Tyr(191)) are necessary and sufficient to achieve a Ca(2+) flux following TCR stimulation. These tyrosine residues function by reconstituting PLC-gamma(1) phosphorylation and recruitment to LAT. However, these same tyrosines can only partially reconstitute Erk activation. Full reconstitution of Erk requires two additional tyrosine residues (Tyr(110) and Tyr(226)), both of which have the Grb2-binding motif YXN. This reconstitution of Erk activation requires that the critical tyrosine residues be on the same molecule of LAT, suggesting that a single LAT molecule nucleates multiple protein-protein interactions required for optimal signal transduction.

PMID:
11395491
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk