Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Steroid Biochem Mol Biol. 2001 Jan-Mar;76(1-5):213-25.

Multiple signal transduction pathways mediate interleukin-4-induced 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase in normal and tumoral target tissues.

Author information

  • 1Laboratory of Hereditary Cancers, Oncology and Molecular Endocrinology Research Center, CHUL Research Center and Laval University, 2705 Laurier Blvd, Quebec, G1V 4G2, Quebec City, Canada.

Abstract

The 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (3beta-HSD) isoenzymes catalyze an essential step in the formation of all classes of active steroid hormones. We have recently shown that 3beta-HSD type 1 gene expression is specifically induced by interleukin (IL)-4 and IL-13 in several human cancer cell lines and in normal human mammary and prostatic epithelial cells in primary culture. There is evidence that IL-4 stimulates bifurcating signaling pathways in which the Stat6-signal pathway is involved in differentiation and gene regulation, whereas insulin receptor substrate (IRS) proteins mediate the mitogenic action of IL-4. As a matter of fact, we have shown that IL-4-activated Stat6 in all cell lines studied, where IL-4 induced 3beta-HSD type 1 expression but not in those cell lines that failed to respond to IL-4. The mechanism of the induction of 3beta-HSD type 1 gene expression was further characterized in ZR-75-1 human breast cancer cells. We have also found that IL-4 rapidly induced IRS-1 and IRS-2 phosphorylation in these cell lines. Moreover, insulin-like growth factor (IGF)-1 and insulin, which are well known to cause IRS-1 and IRS-2 phosphorylation, increased the stimulatory effect of IL-4 on 3beta-HSD activity. IRS-1 and IRS-2 are adapter molecules that provide docking sites for different SH2 domain-containing proteins, leading to the activation of multiple pathways, such as the phosphatidylinositol (PI) 3-kinase and the mitogen-activated protein (MAP) pathways. The inhibition of IL-4-induced 3beta-HSD expression by PI 3-kinase inhibitors (wortmannin and LY294002) as well as an inhibitor of MAP kinase activation (PD98059), indicates the involvement of those pathways in this response to IL-4. Wortmannin also blocked MAP kinase activation by IL-4, insulin and IGF-1 suggesting that the MAP kinase cascade acts as a downstream effector of PI 3-kinases. Furthermore, we showed that the PKC activator phorbol-12-myristate-13-acetate (PMA) also potentiated the IL-4-induced 3beta-HSD activity, thus suggesting that one signaling molecule that is involved in the signal transduction of the IL-4 action on 3beta-HSD type 1 expression is also a substrate for PKC. Taken together, these findings suggest the existence of a novel mechanism of gene regulation by IL-4. This mechanism would involve in the phosphorylation of IRS-1 and IRS-2, which transduce the IL-4 signal through a PI 3-kinase- and MAP kinase-dependent signaling pathway. However, the inability of IGF-1, insulin and PMA to stimulate 3beta-HSD type 1 expression by themselves in the absence of IL-4 indicates that the multiple pathways downstream of IRS-1 and IRS-2 must act in cooperation with an IL-4-specific signaling molecule, such as the transcription factor Stat6. It is also of interest to note that there also appear to be differences between the regulation of the 3beta-HSD type 1 and type 2 promoters.

PMID:
11384880
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk