Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 2001 Jun;18(6):1001-13.

Bayesian selection of continuous-time Markov chain evolutionary models.

Author information

  • 1Department of Biomathematics, UCLA School of Medicine, Los Angeles, CA 90095-7088, USA.

Abstract

We develop a reversible jump Markov chain Monte Carlo approach to estimating the posterior distribution of phylogenies based on aligned DNA/RNA sequences under several hierarchical evolutionary models. Using a proper, yet nontruncated and uninformative prior, we demonstrate the advantages of the Bayesian approach to hypothesis testing and estimation in phylogenetics by comparing different models for the infinitesimal rates of change among nucleotides, for the number of rate classes, and for the relationships among branch lengths. We compare the relative probabilities of these models and the appropriateness of a molecular clock using Bayes factors. Our most general model, first proposed by Tamura and Nei, parameterizes the infinitesimal change probabilities among nucleotides (A, G, C, T/U) into six parameters, consisting of three parameters for the nucleotide stationary distribution, two rate parameters for nucleotide transitions, and another parameter for nucleotide transversions. Nested models include the Hasegawa, Kishino, and Yano model with equal transition rates and the Kimura model with a uniform stationary distribution and equal transition rates. To illustrate our methods, we examine simulated data, 16S rRNA sequences from 15 contemporary eubacteria, halobacteria, eocytes, and eukaryotes, 9 primates, and the entire HIV genome of 11 isolates. We find that the Kimura model is too restrictive, that the Hasegawa, Kishino, and Yano model can be rejected for some data sets, that there is evidence for more than one rate class and a molecular clock among similar taxa, and that a molecular clock can be rejected for more distantly related taxa.

PMID:
11371589
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk