Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Arch Biochem Biophys. 2001 Feb 1;386(1):89-94.

Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking.

Author information

  • 1Department of Biochemistry, August Krogh Institute, University of Copenhagen, Denmark.


The 26S proteasome is the major protease responsible for nonlysosomal protein degradation in eukaryotic cells. The enzyme is composed of two subparticles: the 20S proteasome, and a 19S regulatory particle (PA700) which binds to the ends of the 20S proteasome cylinder and accounts for ATP dependence and substrate specificity. Among the approximately 18 subunits of PA700 regulator, six are ATPases. The ATPases presumably recognize, unfold, and translocate substrates into the interior of the 26S proteasome. It is generally believed that the ATPases form a hexameric ring. By means of chemical cross-linking, immunoprecipitation, and blotting, we have determined that the ATPases are organized in the order S6-S6'-S10b-S8-S4-S7. Additionally, we found cross-links between the ATPase S10b and the 20S proteasome subunit alpha6. Together with the previously known interaction between S8 and alpha1 and between S4 and alpha7, these data establish the relative orientations of ATPases with respect to the 20S proteasome.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk