Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Science. 2001 May 4;292(5518):926-9.

Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia.

Author information

  • 1Gunma University School of Medicine, Maebashi, Gunma 371-8511, Japan.

Abstract

Glial cells express a variety of neurotransmitter receptors. Notably, Bergmann glial cells in the cerebellum have Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) assembled without the GluR2 subunit. To elucidate the role of these Ca2+-permeable AMPARs, we converted them into Ca2+-impermeable receptors by adenoviral-mediated delivery of the GluR2 gene. This conversion retracted the glial processes ensheathing synapses on Purkinje cell dendritic spines and retarded the removal of synaptically released glutamate. Furthermore, it caused multiple innervation of Purkinje cells by the climbing fibers. Thus, the glial Ca2+-permeable AMPARs are indispensable for proper structural and functional relations between Bergmann glia and glutamatergic synapses.

Comment in

PMID:
11340205
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk