Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2001 Apr 30;153(3):569-84.

Rho-kinase--mediated contraction of isolated stress fibers.

Author information

  • 1Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan. katoichi@ri.ncuc.go.jp

Abstract

It is widely accepted that actin filaments and the conventional double-headed myosin interact to generate force for many types of nonmuscle cell motility, and that this interaction occurs when the myosin regulatory light chain (MLC) is phosphorylated by MLC kinase (MLCK) together with calmodulin and Ca(2+). However, recent studies indicate that Rho-kinase is also involved in regulating the smooth muscle and nonmuscle cell contractility. We have recently isolated reactivatable stress fibers from cultured cells and established them as a model system for actomyosin-based contraction in nonmuscle cells. Here, using isolated stress fibers, we show that Rho-kinase mediates MLC phosphorylation and their contraction in the absence of Ca(2+). More rapid and extensive stress fiber contraction was induced by MLCK than was by Rho-kinase. When the activity of Rho-kinase but not MLCK was inhibited, cells not only lost their stress fibers and focal adhesions but also appeared to lose cytoplasmic tension. Our study suggests that actomyosin-based nonmuscle contractility is regulated by two kinase systems: the Ca(2+)-dependent MLCK and the Rho-kinase systems. We propose that Ca(2+) is used to generate rapid contraction, whereas Rho-kinase plays a major role in maintaining sustained contraction in cells.

PMID:
11331307
[PubMed - indexed for MEDLINE]
PMCID:
PMC2190572
Free PMC Article

Images from this publication.See all images (10)Free text

Figure 3
Figure 1
Figure 2
Figure 5
Figure 4
Figure 6
Figure 7
Figure 8
Figure 10
Figure 9
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk