Send to

Choose Destination
See comment in PubMed Commons below
Cell Biochem Biophys. 2000;32 Spring:239-46.

Very-long-chain fatty acid metabolism in adrenoleukodystrophy protein-deficient mice.

Author information

  • 1Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.


X-linked adrenoleukodystrophy (X-ALD) is characterized by progressive mental and motor deterioration, with demyelination of the central and peripheral nervous system. Its principal biochemical abnormality is the accumulation of very-long-chain fatty acids (VLCFAs) in tissues and body fluids, caused by the impairment of peroxisomal beta-oxidation. The authors have generated a line of mice deficient in ALD protein (ALDP) by gene targeting. ALDP-deficient mice appeared normal clinically, at least up to 12 mo. Western blot analysis showed absence of ALDP in the brain, spinal cord, lung, and kidney. The amounts of C26:0 increased by 240% in the spinal cord. VLCFA beta-oxidation in cultured hepatocytes was reduced to 50% of normal. The authors investigated the roles of ALDP in VLCFA beta-oxidation using the ALDP-deficient mice. Very-long-chain acyl-CoA synthetase (VLACS) is functionally deficient in ALD cells. The impairment of VLCFA beta-oxidation in the ALDP-deficient fibroblasts was not corrected by over-expression of VLACS only, but was done by co-expression of VLACS and ALDP, suggesting that VLACS requires ALDP to function. VLACS was detected in the peroxisomal and microsomal fractions of the liver from both types of mice. Peroxisomal VLACS was clearly decreased in the ALDP-deficient mouse. Thus, ALDP is involved in the peroxisomal localization of VLACS.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk