Display Settings:


Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Nat Biotechnol. 2001 May;19(5):475-9.

Growth factors regulate the survival and fate of cells derived from human neurospheres.

Author information

  • 1MRC Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK. mac28@hermes.cam.ac.uk


Cells isolated from the embryonic, neonatal, and adult rodent central nervous system divide in response to epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF-2), while retaining the ability to differentiate into neurons and glia. These cultures can be grown in aggregates termed neurospheres, which contain a heterogeneous mix of both multipotent stem cells and more restricted progenitor populations. Neurospheres can also be generated from the embryonic human brain and in some cases have been expanded for extended periods of time in culture. However, the mechanisms controlling the number of neurons generated from human neurospheres are poorly understood. Here we show that maintaining cell-cell contact during the differentiation stage, in combination with growth factor administration, can increase the number of neurons generated under serum-free conditions from 8% to > 60%. Neurotrophic factors 3 and 4 (NT3, NT4) and platelet-derived growth factor (PDGF) were the most potent, and acted by increasing neuronal survival rather than inducing neuronal phenotype. Following differentiation, the neurons could survive dissociation and either replating or transplantation into the adult rat brain. This experimental system provides a practically limitless supply of enriched, non-genetically transformed neurons. These should be useful for both neuroactive drug screening in vitro and possibly cell therapy for neurodegenerative diseases.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk