Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2001 Apr 1;73(7):1408-15.

Three-way analysis of fluorescence spectra of polycyclic aromatic hydrocarbons with quenching by nitromethane.

Author information

  • 1Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada.

Abstract

The application of trilinear decomposition (TLD) to the analysis of fluorescence excitation-emission matrices of mixtures of polycyclic aromatic hydrocarbons (PAHs) is described. The variables constituting the third-order tensor are excitation wavelength, emission wavelength, and concentration of a fluorescence quencher (nitromethane). The addition of a quencher to PAH mixtures selectively reduces the fluorescence intensity of mixture components according to the Stern-Volmer equation. TLD allows the three-way matrix to be decomposed to give unique solutions for the excitation spectrum, emission spectrum, and quenching profiles for each component. The availability of spectra and calculated Stern-Volmer constants can aid in the identification of unknown components. Preprocessing of the data to correct for Rayleigh/Raman scatter and primary absorption by the quencher is necessary. Both three-component (anthracene, pyrene, 1-methylpyrene) and four-component (fluoranthene, anthracene, pyrene, 2,3-benzofluorene) synthetic mixtures are successfully resolved by TLD using quencher concentrations up to 100 mM. Results are compared using both alternating least-squares and direct trilinear decomposition algorithms. The reproducibility of extracted Stern-Volmer constants is determined from replicate experiments. To illustrate the application of TLD to a real sample, a chromatographic cut from the analysis of a light gas oil sample was used. Analysis of the TLD extracted spectra and quenching constants suggests the presence of three classes of polycyclic aromatic hydrocarbons consistent with data from a second dimension of chromatography and mass spectrometry.

PMID:
11321288
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk