Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Jul 13;276(28):26430-40. Epub 2001 Apr 13.

Galactan biosynthesis in Mycobacterium tuberculosis. Identification of a bifunctional UDP-galactofuranosyltransferase.

Author information

  • 1Department of Microbiology and Immunology, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, United Kingdom.

Abstract

The cell wall of Mycobacterium tuberculosis and related genera is unique among prokaryotes, consisting of a covalently bound complex of mycolic acids, D-arabinan and D-galactan, which is linked to peptidoglycan via a special linkage unit consisting of Rhap-(1-->3)-GlcNAc-P. Information concerning the biosynthesis of this entire polymer is now emerging with the promise of new drug targets against tuberculosis. Accordingly, we have developed a galactosyltransferase assay that utilizes the disaccharide neoglycolipid acceptors beta-d-Galf-(1-->5)-beta-D-Galf-O-C(10:1) and beta-D-Galf-(1-->6)-beta-D-Galf-O-C(10:1), with UDP-Gal in conjunction with isolated membranes. Chemical analysis of the subsequent reaction products established that the enzymatically synthesized products contained both beta-D-Galf linkages ((1-->5) and (1-->6)) found within the mycobacterial cell, as well as in an alternating (1-->5) and (1-->6) fashion consistent with the established structure of the cell wall. Furthermore, through a detailed examination of the M. tuberculosis genome, we have shown that the gene product of Rv3808c, now termed glfT, is a novel UDP-galactofuranosyltransferase. This enzyme possesses dual functionality in performing both (1-->5) and (1-->6) galactofuranosyltransferase reactions with the above neoglycolipid acceptors, using membranes isolated from the heterologous host Escherichia coli expressing Rv3808c. Thus, at a biochemical and genetic level, the polymerization of the galactan region of the mycolyl-arabinogalactan complex has been defined, allowing the possibility of further studies toward substrate recognition and catalysis and assay development. Ultimately, this may also lead to a more rational approach to drug design to be explored in the context of mycobacterial infections.

PMID:
11304545
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk