Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 2001 Apr;40(1):1-8.

No syringes please, ejection of phage T7 DNA from the virion is enzyme driven.

Author information

  • Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712-1095, USA. molineux@mail.utexas.edu

Abstract

Development of a sensitive assay that measures the rate of cellular internalization of an infecting bacteriophage T7 genome has led to surprising observations on the initiation of infection. Proteins ejected from the phage virion probably function as an extensible tail to form a channel across the cell envelope. This channel is subsequently used for translocating the phage genome into the cell. One of these ejected proteins also controls the amount of DNA that enters the cell, rendering subsequent internalization of the remainder of the genome dependent on transcription. Mutations affecting this protein allow the entire phage genome to enter a cell by the transcription-independent process. This process exhibits pseudo-zero-order reaction kinetics and a temperature dependence of translocation rate that are not expected if DNA ejection from a phage capsid were caused by a physical process. The temperature dependence of transcription-independent T7 DNA translocation rate is similar to those of enzyme-catalysed reactions. Current data suggest a highly speculative model, in which two of the proteins ejected from the phage head establish a molecular motor that ratchets the phage genome into the cell.

PMID:
11298271
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk