Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Jun 1;276(22):18673-80. Epub 2001 Mar 5.

Regulation of a human chloride channel. a paradigm for integrating input from calcium, type ii calmodulin-dependent protein kinase, and inositol 3,4,5,6-tetrakisphosphate.

Author information

  • 1Inositide Signaling and Membrane Signaling Groups, Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA. ho1@niehs.nih.gov

Abstract

We have studied the regulation of Ca(2+)-dependent chloride (Cl(Ca)) channels in a human pancreatoma epithelial cell line (CFPAC-1), which does not express functional cAMP-dependent cystic fibrosis transmembrane conductance regulator chloride channels. In cell-free patches from these cells, physiological Ca(2+) concentrations activated a single class of 1-picosiemens Cl(-)-selective channels. The same channels were also stimulated by a purified type II calmodulin-dependent protein kinase (CaMKII), and in cell-attached patches by purinergic agonists. In whole-cell recordings, both Ca(2+)- and CaMKII-dependent mechanisms contributed to chloride channel stimulation by Ca(2+), but the CaMKII-dependent pathway was selectively inhibited by inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P(4)). This inhibitory effect of Ins(3,4,5,6)P(4) on Cl(Ca) channel stimulation by CaMKII was reduced by raising [Ca(2+)] and prevented by inhibition of protein phosphatase activity with 100 nm okadaic acid. These data provide a new context for understanding the physiological relevance of Ins(3,4,5,6)P(4) in the longer term regulation of Ca(2+)-dependent Cl(-) fluxes in epithelial cells.

PMID:
11279175
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk