Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 May 4;276(18):14634-41. Epub 2001 Jan 29.

Phosphorylation regulates intracellular trafficking of beta-secretase.

Author information

  • 1Adolf Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig-Maximilians-University, 44 Schillerstrasse, 80336 Munich, Germany. jwalter@pbm.med.uni-muenchen.de

Abstract

beta-Secretase (BACE) is a transmembrane aspartyl protease, which generates the N terminus of Alzheimer's disease amyloid beta-peptide. Here, we report that BACE can be phosphorylated within its cytoplasmic domain at serine residue 498 by casein kinase 1. Phosphorylation exclusively occurs after full maturation of BACE by propeptide cleavage and complex N-glycosylation. Phosphorylation/dephosphorylation affects the subcellular localization of BACE. BACE wild type and an S498D mutant that mimics phosphorylated BACE are predominantly located within juxtanuclear Golgi compartments and endosomes, whereas nonphosphorylatable BACE S498A accumulates in peripheral EEA1-positive endosomes. Antibody uptake assays revealed that reinternalization of BACE from the cell surface is independent of its phosphorylation state. After reinternalization, BACE wild type as well as BACE S498D are efficiently retrieved from early endosomal compartments and further targeted to later endosomal compartments and/or the trans-Golgi network. In contrast, nonphosphorylatable BACE S498A is retained within early endosomes. Our results therefore demonstrate regulated trafficking of BACE within the secretory and endocytic pathway.

PMID:
11278841
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk