Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 May 11;276(19):15581-91. Epub 2001 Feb 5.

In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5'- and 3'-terminal regions that influence RNA structure.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA.


Viral replicases of many positive-strand RNA viruses are membrane-bound complexes of cellular and viral proteins that include viral RNA-dependent RNA polymerase (RdRP). The in vitro RdRP assay system that utilizes cytoplasmic extracts from dengue viral-infected cells and exogenous RNA templates was developed to understand the mechanism of viral replication in vivo. Our results indicated that in vitro RNA synthesis at the 3'-untranslated region (UTR) required the presence of the 5'-terminal region (TR) and the two cyclization (CYC) motifs suggesting a functional interaction between the TRs. In this study, using a psoralen-UV cross-linking method and an in vitro RdRP assay, we analyzed structural determinants for physical and functional interactions. Exogenous RNA templates that were used in the assays contained deletion mutations in the 5'-TR and substitution mutations in the 3'-stem-loop structure including those that would disrupt the predicted pseudoknot structure. Our results indicate that there is physical interaction between the 5'-TR and 3'-UTR that requires only the CYC motifs. RNA synthesis at the 3'-UTR, however, requires long range interactions involving the 5'-UTR, CYC motifs, and the 3'-stem-loop region that includes the tertiary pseudoknot structure.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk